THE STRUCTURE OF A NEW NUCLEOSIDE ANTIBIOTIC, CAPURAMYCIN

Haruo Seto*, Noboru Otake Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan Shingo Sato, Hiroshi Yamaguchl, Kinjl Takada, Masayoshl Itoh Central Research Institute, MECT Corporation, Kitano, Tokorozawa-shl, Saitama 359, Japan Helen S. M. Lu and Jon Clardy Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, New York, 14853-1301

Summary: The structure of capuramycin has been determined to be an uracll nucleoside with a caprolactam substltuent as shown in Fig. 5 by NMR spectral analysis, chemical degradation and X-ray analysis.

During the course of our screening program for new antibiotics, it was found that Streptomyces griseus $446-53$ produced a new nucleoside antibiotic which we have named capuramycln (I). This antibiotic was isolated from the fermentation broth by adsorption on HP-20 followed by silica gel (CHCl₃:MeOH = 5O:l) and Toyopearl HW-40F (MeOH) column chromatography. It is active against Streptococcus pneumoniae and Mycobacterium smegmatis ATCC $607¹$. In this note we report the structural elucidation of I based on 13 C- and 1 H-NMR spectral analysis, chemical degradation and X-ray analysis.

The physicochemical properties of I are as follows; white amorphous powder, $C_{23}H_{31}O_{12}N_5$, SI-MS; (m/z) 570 $(M+H)^+$, 592 $(M+Na)^+$, 608 $(M+K)^+$, Anal. found, C; 48.59, H; 5.79, 0; 33.27, N; 12.37 %, Calcd., C; 48.50, H; 5.49, 0; 33.71, N; 12.30 %, mp. 173-176°C, $[\alpha]_0^{25}$ +99° (c 0.5, H₂0), pKa' 9.1, UV λ max (MeOH) 214nm (E 16200) and 257 (sh, 9800). The IR spectrum of I (KBr) showed the presence of $-OH$, $-NH$ and amide functions (3400, 1680, 1515 cm^{-1}) and the absence of ester or carboxyllc acid residues. I was positive to potassium permanganate and Molish, but negative to ninhydrin, anthrone, FeCl₃ and Sakaguchi reactions. Complete acid hydrolysis of I (6N HCl, 100°C, 16hrs) gave L-lysine and uracil.

The ¹³C-NMR spectrum² of <u>I</u> taken in CD₃OD revealed the following functional groups; $4 \times CH_2 - (6C_2 - 29.0 - 42.5)$, 1 x $N-CH- (53.4)$, 1 x $OCH_3 (58.7)$, 6 x OCH- $(63.5-83.5)$, 1 x N-CH-O (90.4) , 1 x O-CH-O (101.3) , 3 x -CH= $(102.9 141.9$, 1 x =C- (144.3) , and 5 x N-C=0 $(152.5-176.3)$.

A detailed analysis of the COSY and 13 C-¹H COSY NMR spectra of I taken in $CD₂OD$ showed the partial structures a, b, and c in Fig. 1. The relationships between protons and carbons not Indicated by these methods were established by

2343

the HMBC technique reported by Bax et al³⁾. Thus, the position of OCH₃ ($\delta_{\rm H}$ 3.426) on C-3' was established by the cross peak observed between H-3' (δ_H) 3.843) and OMe (δ_C 58.7) as shown in the HMBC spectrum of I (Fig. 2). The linkage of an amide carbonyl group to C-5' was confirmed by the cross peak between H-5' (δ_H 4.671) and C-6' (δ_G 173.4). In a similar way, the following connectivities proved by analyzing the same HMBC spectrum; $H-1'$ to $C-2$ and $C-6$, H-1" to C-5" via an oxygen, H-3" to C-5", H-4" to C-5" and C-6", H-2"' to C-1"', and H-6"' to C-1"'. Although the linkage between C-1' and C-4' through an oxygen could not be obtained by this technique due to the very small coupling constants between H-1' and C-4', and H-4' and C-1', their relationship was established by X-ray analysis (vide infra).

The Information on the linkage between these three fragments a-c was also obtained from the analysis of the HMBC spectrum. For example, $H-5'$ (δ_H 4.671) and H-1" (δ_H 5.239) showed a cross peak with C-1" (δ_C 101.3) and C-5' (δ_C 79.0), respectively, to result in the linkage of fragment a and fragment b. The cross peak between H-2"' (δ_H 4.552) and C-6" (δ_C 161.9) attached fragment c to fragment b. Since It was suggested by IR and tiratlon data that there existed no ester or free carboxylic function in I (vide supra), the carbonyl function of C-6' must be assigned to an amide residue establishing the planar structure of I (see Fig. 5).

The stereochemistry of I was established as follows.

Mild acid treatment (0.5N HCl, 100°C, 2hrs) of I gave, inter alia, II as the nucleoside component. The physicochemical properties of II are as follows; $C_{11}H_{1\mu}O_RN_{2}$, SI-MS data of <u>IV</u>; (m/z) 325 (M+Na), ¹H-NMR spectral data taken in

D20; 6H **5.89** (lH, d, J=8.0 Hz, H-51, 8.04 (lH, d, J=8.0 Hz, H-61, 5.88 (IH, d, 5~4.5 Hz, H-l'), 4.48 (lH, dd, J=4.5, 5.0 Hz, H-2'), 3.99 (lH, dd, J=5.0, 5.0 Hz, H-3'), 4.50 (lH, dd, J=2.2, 5.0 Hz, H-4'), 4.21 (lH, d, J=2.2 Hz, H-5'), 3.48 (3H, s, 3'-OMe), ¹³C-NMR spectral data taken in D₂O; δ_C C-2 152.1, C-4 166.6, C-5 102.9, C-6 142.3, C-l' 89.7, c-2' 73.4, c-3' 79.9, C-4' 84.1, C-5' 72.0, $C-6'$ 177.4, $CH_3O-58.8$. The magnitude of the coupling constant of the anomeric proton (J_{1},J_{2}) =4.5 Hz) and the ¹³C-chemical shift of C-4' (84.1 ppm) of II suggested the presence of a furanose ring.

The structure of II including its relative stereochemistry was determined by Xray analysis⁴⁾ of its $3_{N-\text{methyl}}$ methyl ester derivative prepared by treatment with diazomethane In MeOH. Its absolute stereochemistry was determined to be as shown in Fig. 3 by its CD spectral data $[0.6]^{2.5}_{2.8}$ +9480 pk, $[0.1]_{2.9}^{2.5}$ -4170 tr, (c 0.01, H₂0)] which were very similar to those of uracil polyoxin C^{5} [[θ] $\frac{25}{5}$ +12879 pk, [θ] $\frac{25}{5}$ -4545 $tr, (c 0.01, H₂0)].$

The stereochemistry of the hexuronic acid moiety was determined by analysis of a dihydro derivative of 1. Catalytic hydrogenation of I (over 10% Pd-C in MeOH) gave a major dihydro derivative, III, C₂₃H₃₃O₁₂N₅, SI-MS; (m/z) 572 (M+H)⁺, 594 (M+Na)⁺, UV λ max (H₂0) 262 nm (ε 8540), mp. 182°C, $[\alpha]_D^{25}$ +58°(c 0.5, H₂0). Detailed analysis of the 400 MHz ¹H-NMR spectrum of III revealed, In addition to the structures described above, the presence of the partial structure shown in Fig. 4. The 13 C- and 1 H-NMR data proved the 4-deoxyhexuronic acid structure and the chemical shift of C-1" (δ_c 100.6 and δ_H 5.13, respectively) suggested that this residue took a pyranose form.

The stereochemistry of this sugar residue was established to be as shown in Fig. 4. The coupling constants between $H-4$ "a and $H-5$ " $(J_{4}n_{a,5}n=12.0$ Hz), and H-3" and H-4a" $(J_{3^n,4^n}a^{-11.5}$ Hz) indicated diaxial relationships of these three protons. The stereochemistry of H-2" was proved to be equatorial by the coupling constant between H-2" and H-3" $(J_{2^m,3^m} = 3.5$ Hz). The configuration of H-1" was determined by NOE experiments to be equatorial as follows. On Irradiating at H-l", NOES were observed with H-2"eq and the methine proton (H-5') of the other sugar unit but not with H-5"ax, while Irradiation at H-5"ax enhanced the signal intensity of $H-3$ "ax without affecting that of $H-1$ ".

The absolute stereochemistry of this pyranose ring portion was established by cupra ammonium method⁶⁾. The obtained value, [M]CuAm 436 nm = +2057, showed clearly that the vicinal hydroxy groups on C-2" and C-3" are In an antlclockwlse relationship. Consequently the asymmetric centers at C-l", C-2" and C-3" were established to possess S configurations.

Thus, the complete absolute structure of I has been established as shown in Fig. 5. As far as we know, capuramycin Is the first natural product with a caprolactam substltuent.

Acknowledgment

The authors thank to Dr. K. Isono of Physical and Chemical Research for a sample of uracilpolyoxin C and Prof. T. Endo of Kyoritsu College of Pharmacy for CD spectra. This work was supported in part by a Grant-In-Aid for Developmental Scientific Research 62860014 to H.S. The Cornell group thanks NIH CA24487 for financial support.

REFERENCES AND FOOTNOTES

- 1) H. Yamaguchi, S. Sato, S. Yoshida, K. Takada, Y. Shitori, H. Seto and N. Otake; J. Antibiotics, 39, 1047 (1986).
- 2) ¹³C- and ¹H-NMR spectra were obtained on a JEOL GX-400 spectrometer operating at 100 MHz and 400 MHz, respectively. Chemical shifts are expressed in ppm using TMS or DSS as internal standard.
- 3) M. F. Summers, L. G. Marzilli and A. Bax; J. Am. Chem. Soc. 108, 4285 (1986). A. Bax, A. Aszalos, Z. Dlnya and K. Sudo; J. Am. Chem. Sot., 108, 8056 (1986).
- 4) The $3N$ -methyl methyl ester of II crystallized in the monoclinic space group P2₁ with $a=7.540(3)$, $b=7.135(2)$, and $c=13.782(9)$ A and $=92.56(4)$ °. One molecule of composition $C_{13}H_{18}O_8N_2$ formed the unit. After correction for Lorentz, polarization, and background effects, 916 (91%) of the 1104 reflections measured were judged observed. Block diagonal least squares refinements with anisotropic nonhydrogen atoms and isotropic hydrogens have converged to a conventional crystallographic residual of 0.0812 for the observed data. Atomic coordinates for this structure have been deposited with the Cambridge Crystallographic Data Center.
- 5) K. Isono, S. Suzuki; Tetrahedron Lett. 1968, 203.
- 6) R. E. Reeves; Adv. Carbohyd. Chem. 6, 107 (1951).

(Received in Japan 25 February 1988)

2346